Processing math: 100%

Sunday, 13 February 2022

Jacobi (elliptic) coordinates

Since cn2u+sn2u=1,

x=r cn u,

y=r sn u,

where sn and cn are sinus amplitudinis and cosinus amplitudinis,

yields 

x2+y2=r2.

Using Jacobi's ellipse, we can now construct the following integral. 

w=u0dμ1l2 sn2μ,

which satisfies the differential equation associated with the algebraic curve

y2=x6+ax2+bx+c

No comments:

Post a Comment