$$u(x,t)=f\big(\gamma(x-vt)\big)$$
$$x'=\gamma(x-vt)$$
$$u(x,t)=f(x')$$
$$x'=\gamma (x-vt)$$
Since
$$t'=\gamma\big(t-\frac{vx}{c^2}\big)$$
Is it possible to have some other phenomenon which is essentially relativistic
$$w(x,t)=w(t')=w\left(\gamma\big(t-\frac{vx}{c^2}\big)\right)$$
We can see that \(w\) satisfies the following PDE
$$\boxed{(\frac{c^2}{v})^2\frac{\partial^2 w}{\partial x^2}=\frac{\partial^2 w}{\partial t^2}}$$
whose solution is
$$w(x,t)=g\big(t-\frac{x}{v'}\big)$$
where $$v'=\frac{c^2}{v}$$ so the harmonic solution $$w(x,t)=e^{i(\omega t - kx)}$$ where with the dispersion relation $$\boxed{v=\frac{kc^2}{\omega}}$$
On the other hand
$$v=\frac{p}{m}$$
so
$$p=\frac{mc^2}{\omega}k$$
No comments:
Post a Comment