Processing math: 100%

Friday, 2 February 2024

Dirac delta as Kernel

 Let

δ(x,s):=δs(x)=δ0(xs)

Then we ask what is the analogue of Sturm-Liouville equation Ly=f when G(x,s)=δ(x,s)

So, if we define 

L(x)=xddx

we have 

Lδ=δ.


Note that

xnn!δ(n)(x)=(1)nδ(x),

n=0xnn!δ(n)(x)=δ(x)n=0(1)n,

Borel/Abel summation of Grandi's series
δ(x)=2n=0xnn!δ(n)(x)

No comments:

Post a Comment