Let
$$\boxed{\delta(x,s):=\delta_s (x)=\delta_0 (x-s)}$$
Then we ask what is the analogue of Sturm-Liouville equation \(Ly=f\) when $$\boxed{G(x,s)=\delta(x,s)}$$
So, if we define
$$\boxed{L(x)=-x\frac{d}{dx}}$$
we have
$$L\delta=\delta.$$
Note that
$$\frac{x^n}{n!}\delta^{(n)}(x)=(-1)^n \delta(x),$$
$$\sum_{n=0}^\infty\frac{x^n}{n!}\delta^{(n)}(x)= \delta(x)\sum_{n=0}^\infty(-1)^n,$$
Borel/Abel summation of Grandi's series$$\delta(x)=2\sum_{n=0}^\infty\frac{x^n}{n!}\delta^{(n)}(x)$$
No comments:
Post a Comment