Réflexions
Alireza Jamali's Blog
Pages
Home
About me
Abandoned notes
Monday, 24 March 2025
\(\sin(rx)\) for real r
$$\sin(nx)=\sum_{k=0}^n {n \choose k} \cos^k x \sin^{n-k} x \sin[(n-k)\frac{\pi}{2}]$$
Apply Newton's trick of generalizing the Bionomial expansion to real powers:
$$\sin(rx) :=\sum_{k=0}^\infty {r \choose k} \cos^k x \sin^{r-k} x \sin[(r-k)\frac{\pi}{2}]$$
No comments:
Post a Comment
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment