$$u=\rho c^2,$$
so $$\nabla\cdot\textbf{g}=-\frac{4\pi G}{c^2}u.$$
Propose
$$\boxed{\nabla\times\textbf{g}=\alpha \textbf{S}}$$
Using
$$\frac{\partial u}{\partial t}=-\nabla\cdot\textbf{S}$$
we get a new source for \(\textbf{S}\):
$$\boxed{\textbf{S}=\frac{c^2}{4\pi G}\frac{\partial \textbf{g}}{\partial t}}$$
No comments:
Post a Comment