$$\omega\equiv i\frac{\partial}{\partial t}\log\psi$$
$$\beta:=\frac{1}{k_B T}\equiv -it$$
so
$$\beta\omega=t\frac{\partial}{\partial t}\log\psi,$$
thus
$$e^{\frac{\hbar\omega}{k_B T}}=e^{\hbar\beta\omega}=\exp (\hbar t\frac{\dot{\psi}}{\psi}).$$
In operator form
$$\hat{e}^{\hbar\beta\omega}=\exp(\hbar t\frac{\partial}{\partial t})$$
No comments:
Post a Comment