Recall $$r^2=x^2+y^2,$$
and $$\theta=\tan^{-1}\frac{y}{x}.$$If
$$\omega=\frac{d\theta}{dt},$$
we have
$$\omega=(\frac{dx}{dt}, \frac{dy}{dt})\cdot\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)=\textbf{v}\cdot \textbf{k},$$
where $$\textbf{k}:=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$$
so
$$\omega=vk\cos\phi,$$
which gives
$$v=\frac{\omega}{k},$$
for \(\phi=2n\pi\).
As $$\Arrowvert\textbf{k}\Arrowvert=\frac{1}{\sqrt{x^2+y^2}}=\frac{1}{r},$$
this means to each trajectory \(\textbf{x}(t)=\big(x(t),y(t)\big),\) we can associate a harmonic wave with frequency $$\omega=\frac{\Arrowvert \textbf{v}(t)\Arrowvert}{\Arrowvert \textbf{x}(t)\Arrowvert}.$$
No comments:
Post a Comment