$$\frac{dv}{dx}=\frac{d}{dt}\log v=\frac{a}{v}$$
We want to find the gravitational potential
$$\frac{d^2\phi}{dx^2}=0$$
in terms of \(v\).
First, note that
$$\frac{dv}{dx}=\frac{d}{dt}\log v=\frac{dv/dt}{v}=\frac{a}{v},$$
$$\frac{da}{dv}=\frac{d}{dt}\log a=\frac{da/dt}{a}=\frac{j}{a}.$$
Then
$$\frac{d\phi}{dx}=\frac{d\phi}{dv}\frac{dv}{dx}=\frac{d\phi}{dv}\frac{a}{v},$$
Apply Laplace equation to get
$$\frac{d}{dv}\left(\frac{d\phi}{dx}\right)=0$$
$$\frac{d}{dv}\left(\frac{d\phi}{dx}\right)=\frac{d}{dv}\left(\frac{d\phi}{dv}\frac{a}{v}\right)=0$$
Assuming \(j=0\) we have the Cauchy-Euler equation
$$v\frac{d^2\phi}{dv^2}-\frac{d\phi}{dv}=0$$
So
$$\phi(v)=Av^2 + B$$
No comments:
Post a Comment