Monday, 17 March 2025

Function spaces

If function composition is the sum of functions' universe,

$$f\oplus g :=fog,$$ 

then we can also define difference in the universe of functions

$$f\ominus g:=fog^{-1}$$

To define the analogue of product we need to repeat sum and then make it a binary relation. 

$$f^n :=\underset{\text{n times}}{fofo\cdots of}$$

We next need to turn \(n\) to a function. 

$$(fpg)(x) :=\underbrace{fof\cdots of}_{g(x) \text{times}}$$

No comments:

Post a Comment